Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
JAMA Neurol ; 79(6): 544-553, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35404378

RESUMO

Importance: Loss of smell is an early and common presentation of COVID-19 infection. Although it has been speculated that viral infection of olfactory neurons may be the culprit, it is unclear whether viral infection causes injuries in the olfactory bulb region. Objective: To characterize the olfactory pathology associated with COVID-19 infection in a postmortem study. Design, Setting, and Participants: This multicenter postmortem cohort study was conducted from April 7, 2020, to September 11, 2021. Deceased patients with COVID-19 and control individuals were included in the cohort. One infant with congenital anomalies was excluded. Olfactory bulb and tract tissue was collected from deceased patients with COVID-19 and appropriate controls. Histopathology, electron microscopy, droplet digital polymerase chain reaction, and immunofluorescence/immunohistochemistry studies were performed. Data analysis was conducted from February 7 to October 19, 2021. Main Outcomes and Measures: (1) Severity of degeneration, (2) losses of olfactory axons, and (3) severity of microvasculopathy in olfactory tissue. Results: Olfactory tissue from 23 deceased patients with COVID-19 (median [IQR] age, 62 [49-69] years; 14 men [60.9%]) and 14 control individuals (median [IQR] age, 53.5 [33.25-65] years; 7 men [50%]) was included in the analysis. The mean (SD) axon pathology score (range, 1-3) was 1.921 (0.569) in patients with COVID-19 and 1.198 (0.208) in controls (P < .001), whereas axon density was 2.973 (0.963) × 104/mm2 in patients with COVID-19 and 3.867 (0.670) × 104/mm2 in controls (P = .002). Concomitant endothelial injury of the microvasculature was also noted in olfactory tissue. The mean (SD) microvasculopathy score (range, 1-3) was 1.907 (0.490) in patients with COVID-19 and 1.405 (0.233) in control individuals (P < .001). Both the axon and microvascular pathology was worse in patients with COVID-19 with smell alterations than those with intact smell (mean [SD] axon pathology score, 2.260 [0.457] vs 1.63 [0.426]; P = .002; mean [SD] microvasculopathy score, 2.154 [0.528] vs 1.694 [0.329]; P = .02) but was not associated with clinical severity, timing of infection, or presence of virus. Conclusions and Relevance: This study found that COVID-19 infection is associated with axon injuries and microvasculopathy in olfactory tissue. The striking axonal pathology in some cases indicates that olfactory dysfunction in COVID-19 infection may be severe and permanent.


Assuntos
COVID-19 , Transtornos do Olfato , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Olfato/etiologia , SARS-CoV-2 , Olfato/fisiologia
2.
Pediatr Neurol ; 121: 11-19, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111619

RESUMO

BACKGROUND: A recurrent homozygous missense variant, c.160G>C;p.(Val54Leu) in HIKESHI, was found to cause a hypomyelinating leukodystrophy with high frequency in the Ashkenazi Jewish population. We provide extended phenotypic classification of this disorder based on clinical history of a further seven affected individuals, assess carrier frequency in the Ashkenazi Jewish population, and provide a neuropathological study. METHODS: Clinical information, neuroimaging, and biosamples were collected. Brain autopsy was performed for one case. RESULTS: Individuals with HIKESHI-related disease share common clinical features: early axial hypotonia evolving to dystonia or with progressive spasticity, hyperreflexia and clonus, feeding difficulties with poor growth, and nystagmus. Severe morbidity or death during febrile illness occurred in five of the nine affected individuals. Magnetic resonance images of seven patients were analyzed and demonstrated diffuse hypomyelination and thin corpus callosum. Genotyping data of more than 125,000 Ashkenazi Jewish individuals revealed a carrier frequency of 1 in 216. Gross pathology examination in one case revealed abnormal white matter. Microscopically, there was a near-total absence of myelin with a relative preservation of axons. The cerebral white matter showed several reactive astrocytes and microglia. CONCLUSIONS: We provide pathologic evidence for a primary disorder of the myelin in HIKESHI-related leukodystrophy. These findings are consistent with the hypomyelination seen in brain magnetic resonance imaging and with the clinical features of early-onset spastic/dystonic quadriplegia and nystagmus. The high carrier rate of the recurrent variant seen in the Ashkenazi Jewish population requires increased attention to screening and diagnosis of this condition, particularly in this population.


Assuntos
Proteínas de Transporte/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Criança , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Humanos , Judeus/genética , Imageamento por Ressonância Magnética , Sequenciamento Completo do Genoma
3.
Acta Neuropathol Commun ; 9(1): 62, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827706

RESUMO

Definitive diagnosis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB) relies on postmortem finding of disease-associated alpha-synuclein (αSynD) as misfolded protein aggregates in the central nervous system (CNS). The recent development of the real-time quaking induced conversion (RT-QuIC) assay for ultrasensitive detection of αSynD aggregates has revitalized the diagnostic values of clinically accessible biospecimens, including cerebrospinal fluid (CSF) and peripheral tissues. However, the current αSyn RT-QuIC assay platforms vary widely and are thus challenging to implement and standardize the measurements of αSynD across a wide range of biospecimens and in different laboratories. We have streamlined αSyn RT-QuIC assay based on a second generation assay platform that was assembled entirely with commercial reagents. The streamlined RT-QuIC method consisted of a simplified protocol requiring minimal hands-on time, and allowing for a uniform analysis of αSynD in different types of biospecimens from PD and DLB. Ultrasensitive and specific RT-QuIC detection of αSynD aggregates was achieved in million-fold diluted brain homogenates and in nanoliters of CSF from PD and DLB cases but not from controls. Comparative analysis revealed higher seeding activity of αSynD in DLB than PD in both brain homogenates and CSF. Our assay was further validated with CSF samples of 214 neuropathologically confirmed cases from tissue repositories (88 PD, 58 DLB, and 68 controls), yielding a sensitivity of 98% and a specificity of 100%. Finally, a single RT-QuIC assay protocol was employed uniformly to detect seeding activity of αSynD in PD samples across different types of tissues including the brain, skin, salivary gland, and colon. We anticipate that our streamlined protocol will enable interested laboratories to easily and rapidly implement the αSyn RT-QuIC assay for various clinical specimens from PD and DLB. The utilization of commercial products for all assay components will improve the robustness and standardization of the RT-QuIC assay for diagnostic applications across different sites. Due to ultralow sample consumption, the ultrasensitive RT-QuIC assay will facilitate efficient use and sharing of scarce resources of biospecimens. Our streamlined RT-QuIC assay is suitable to track the distribution of αSynD in CNS and peripheral tissues of affected patients. The ongoing evaluation of RT-QuIC assay of αSynD as a potential biomarker for PD and DLB in clinically accessible biospecimens has broad implications for understanding disease pathogenesis, improving early and differential diagnosis, and monitoring therapeutic efficacies in clinical trials.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Doença por Corpos de Lewy/diagnóstico , Doença de Parkinson/diagnóstico , alfa-Sinucleína/análise , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
4.
Immunohorizons ; 4(10): 648-658, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067400

RESUMO

TNF is a key cytokine in autoimmune diseases like rheumatoid arthritis, and TNF antagonists are commonly prescribed therapeutics. Although anti-TNF drugs have enabled a very significant progress in this field, disease heterogeneity remains and causes diversity in patient response. These challenges increase the need for anti-TNF characterization tools that may open perspectives toward the development of personalized medicine. In this study, we present a novel whole blood-based flow cytometry functional assay that allows, within a given whole blood sample, the characterization of an anti-TNF molecule mechanisms of action. Whole blood from healthy human donors was employed to mimic the physiological state but also to streamline experimental workflows. Samples were incubated with LPS alone or in combination with various anti-TNF molecules such as adalimumab (ADA), etanercept (ETA), and infliximab. A 10-color flow cytometry panel including CD69, transmembrane TNF, CD16, CD62L, CD66b, CD11b, and CD54 as activation markers was used following a centrifugation-free protocol. CD69 expression decreased on NK, NKT, and T cells upon treatment with ADA, ETA, and IFX as a direct indication of forward signaling neutralization. Percentages of transmembrane TNF+ monocytes increased after incubation when using ADA or IFX but not ETA, revealing the potential of the two first molecules to trigger reverse signaling. Ab-dependent cell cytotoxicity was informed by CD16 and CD69 expressions in some donors that showed increasing levels of CD16- CD69+ NK cells when incubated with anti-TNFs. This study proposes a novel approach to assess anti-TNF mechanisms of action and provides a path toward capturing donor heterogeneity.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Células T Matadoras Naturais/imunologia , Inibidores do Fator de Necrose Tumoral/administração & dosagem , Fator de Necrose Tumoral alfa/imunologia , Adalimumab , Anticorpos Monoclonais Humanizados/administração & dosagem , Antígenos CD/imunologia , Artrite Reumatoide/sangue , Biomarcadores/sangue , Etanercepte , Citometria de Fluxo , Humanos , Infliximab , Inibidores do Fator de Necrose Tumoral/sangue , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...